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Abstract
We present new schemes for solving prefix authentication
and secure relative timestamping. By casting a new light on
antimonotone linking schemes, we improve upon the state
of the art in prefix authentication, and in timestamping with
rounds of bounded length. Our designs can serve as more
efficient alternatives to certificate transparency logs.

1 Introduction

Prefix authentication [15] asks to annotate finite sequences
with metadata so that one can cryptographically prove when
some sequence is a prefix of another. It generalizes tamper-
evident logging [6] and secure timestamping [8].

In recent years, certificate transparency [11] and related
transparency logging schemes [7] [16] [1] have garnered sig-
nificant attention. There has been little progress on improving
the efficiency of the underlying prefix authentication schemes
however.

We provide the first prefix authentication schemes that
asymptotically (and practically) outperform the certificate
transparency logs, both in the amount of required metadata
and in the size of the data that certifies that some string is a
prefix of another.

Section 2 summarizes related work, section 3 gives the
preliminaries to make sense of what follows. Section 4 in-
troduces our core idea of using slightly modified skip lists,
exemplified by a binary skip list. Section 5 presents the more
efficient ternary skip list. We discuss the results in section 6
before concluding in section 7.

Finally, a note on presentation style. We feel like our results
could and should have been discovered two decades ago, had
the literature on secure timestamping via linking schemes
been more accessible to distributed systems practitioners. So
we deliberately focus on concrete schemes rather than abstract
theory, keep the prose compact and the figures plentiful, and
favor intuitive, high-level reasoning over formalisms. Certifi-
cate transparency logs are less elegant than linking schemes

(and less efficient as we are about to show), so we hope the
ideas stick around this time. Those readers who wish for a
more rigorous, formal treatment of prefix authentication via
hash-labeled graphs can find it in [15].

2 Related Work

Prefix authentication [15] unifies several previously disjoint
strands of research, such as secure logging [20] [6] [19], ac-
countable shared storage [12] [23], certificate transparency [9]
[10] [11], or data replication [17] [21]. Our designs fall in
the class of transitive prefix authentication schemes, more
specifically they are linking schemes.

Our two linking schemes are almost isomorphic to the sim-
ple antimonotone binary linking scheme [4] and the optimal
antimonotone binary linking scheme [3] respectively. The
latter paper introduces the antimonotone graph product ⊗ as
an operation that generates all antimonotone binary graphs.
While we do not explicitly define or rely on this operator, we
occasionally mention it to point the interested reader to the
parallels to these works.

The simple and optimal antimonotone binary linking
schemes rely on the same underlying graphs as ours, but
the way these graphs are then used to provide prefix authenti-
cation is suboptimal (as is their direct transformation into an
anti-monotone φ-scheme [5]).

Threaded authentication trees [5], hypercore [17], and cer-
tificate transparency logs [11] are the most efficient prefix
authentication schemes to date. We outperform each of them.

We derive our schemes not from antimonotone theory
but from slightly modified, deterministic skip lists [18].
Chainiac [16] is a prior approach to prefix authentication
based on skip lists, but a significantly less efficient one.
Blibech and Gabillon [2] have proposed a skip list timestamp-
ing scheme of similar efficiency as ours, but their scheme
relies on knowing the maximum length of a timestamping
round. As such, it is only applicable to prefix authentication
for sequences of bounded length, but not for sequences of
arbitrary length.
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1 2 3 4 5 6 7 8 9

p1 p2 p3 p4 p5 p6 p7 p8 p9

Figure 1: The linear linking scheme. The out-neighborhood
of the path from digest_vertex(7) to digest_vertex(3) deter-
mines the label of digest_vertex(7): the labels of p2 and 3
determine the label of p3, this together with the label of 4
determines the label of p4, and so on.

3 Preliminaries

Rather than laying out the general theory of transitive prefix
authentication schemes [15], we present a simple subset that
captures the schemes we will present. The results from the
underlying theories still apply, but we get to significantly
simplify our presentation.

We assume basic understanding of cryptographic hash func-
tions [13], and a basic background in graph theory [22]; we
consider directed graphs exclusively.

When an object contains a secure hash of another object,
the second object must have already existed at the creation
time of the first object. This property transitively carries over,
and forms the basis of our techniques.

We can represent objects that contain hashes of other ob-
jects as labeled DAGs, generalizing the well-known Merkle
trees [14]: sinks are labeled with the hashes of some objects of
interest (say, the elements of a sequence to authenticate), the
other vertices are labeled with the hash of the concatenation
of their out-neighbors’ labels.

For our purposes, a linking scheme is an acyclic graph
whose sinks are the natural numbers without zero, in
which every sink n has exactly one parent vertex, denoted
digest_vertex(n), and in which there is a path from every
digest_vertex(n+ 1) to digest_vertex(n). Figure 1 depicts
the simplemost such graph, fig. 2 shows the more sophisti-
cated simple antimonotone binary linking scheme [4].

Hash-labeled linking schemes can provide prefix authen-
tication. Let t be a sequence of length lent , then label each
sink n ≤ lent with the hash of the n-th sequence item. For any
lens ≤ lent , digest_vertex(lens) authenticates the prefix s of
length lens, since all n ≤ lens are reachable from it and thus
influence its hash.

It hence suffices to certify that digest_vertex(lens) is reach-
able from digest_vertex(lent) in order to prove that s is a
prefix of t. This prefix certificate of s and t consist of the
labels of the closed out-neighborhood of a (shortest) path
from digest_vertex(lent) to digest_vertex(lens): these labels
suffice to reconstruct the label of digest_vertex(lent), thus
proving that there is indeed a path from digest_vertex(lent)
to digest_vertex(lens) (compare fig. 1).

In order to evaluate the efficiency of a linking scheme,

we ask for a mapping certificate_pool : N≥1 → P (V ) that
maps every number to a set of vertices such that for
all lens < lent the shortest path from digest_vertex(lent)
to digest_vertex(lens) is contained in the intersection
certificate_pool(lens) ∪ certificate_pool(lent). The out-
neighborhood of certificate_pool(n) is called the positional
certificate of n.

A particularly interesting class of linking schemes, due to
their similarity to our schemes, are the antimonotone binary
linking schemes [4] [3]. In these schemes, the parent of sink n
— denoted pn — has an edge to pn−1, and another edge to pf(n),
where f is some function that satisfies the antimonotonicity
property n < m =⇒ f(n)≥ f(m). Figure 2 depicts the simple
antimonotone binary linking scheme [4], whose graph Gls2 is
given by the following function f2:

f2(n) :=

{
n− (2k−1 +1) if n = 2k −1,k ∈N
n−2g(n) otherwise

g(n) :=

{
k if n = 2k −1,k ∈N
g(n− (2k−1 −1)) if 2k−1 −1 < n < 2k −1,k ∈N.

4 Skip List Linking Schemes Done Right

Let n,k ∈N0, then maxpowk(n) denotes the largest natural
number p such that kp divides n.

We now present the SLLS2 (binary skip list linking scheme).
Its underlying graph is a skip list with a twist, links that would
normally stay in the same layer of the skip list point to the
topmost available layer instead (fig. 3):

Vslls2 := {(n,k) : n ∈N,k ∈N0 and 2k | n}∪N,

Eslls2 :=
{(

(n,k+1),(n,k)
)}

∪
{(

(n,0),n
)}

∪
{(

(n+2k,k),(n,maxpow2(n))
)}

,

Gslls2 := (Vslls2,Eslls2).

Perhaps surprisingly, the SLLS2 is almost isomorphic to the
simple antimonotone binary scheme [4], compare fig. 3 and
fig. 2. More precisely, Gslls2\N is isomorphic to Gls2\N (and
both are isomorphic to the limit of the recursive antimonotone
product Gi+1

simple := Gi
simple ⊗Gi

simple ⊗G1) [3].
As a single look at fig. 3 and fig. 2 leaves little doubt about

the isomorphism, we give no further proof beyond stating the
bijective function between the vertices. A vertex (n,k) of the
SLLS2 maps to the vertex m of Gls2, where m is the number of
vertices on the longest path from (n,k) to (1,0). Conversely, a
vertex m of Gls2 maps to the vertex (n,k) of the SLLS2, where
n is the number of edges in the longest path from m to 1 of the
form

(
x, f2(x)

)
, and k is the number of consecutive edges at
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(32, 5)

Figure 2: The simple antimonotone binary linking scheme Gls2, highlighting the shortest path from 23 to 9.
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Figure 3: The SLLS2, highlighting the shortest path from (13,0) to (6,0).
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the start of the longest path from m to 1 of the form (x,x−1).
In less formal terms, (n,k) are the x and y coordinates of m
when drawing Gls2 in the style of fig. 2.

The certificate pools for SLLS2 correspond directly to those
of Gls2 under the isomorphism. For any number n, we say it
belongs to generation ⌈log2(n)⌉. We say

(
t, log2(t)

)
is the

vertebra of generation t, and the set of vertebrae of all gen-
erations up to and including t is the spine of generation t.
The certificate pool of n is the union of the shortest paths
from the vertebra of t to (n,0), from (n,0) to the vertebra
of t − 1, and from that vertebra to (1,0). In the isomorphic
antimonotone setting, Buldas et al. [4] have proven that the
intersection of two such certificate pool contains the shortest
path between the numbers in question, so the construction
does indeed yield a valid certificate pool. Figure 4 and fig. 5
convey the underlying intuition.

The size of the out-neighborhood of the certificate pool of
some n is different to that in Gls2 however; we claim it is 2 ·
⌈log2(n)⌉ for all n> 4. Let n∈N,n> 4, and let t be the gener-
ation of n. The shortest path from the vertebra of t−1 to (1,0)
consists of the vertices (2t−1, t −1),(2t−2, t −2), · · · ,(20,0),
for a total of t vertices. Every such vertex has exactly one out-
neighbor outside the path: 1 for (1,0), and (x,k−1) for any
other (x,k). This brings the out-neighborhood of the certifi-
cate pool to a size of at least ⌈log2(n)⌉. It remains to show that
the out-neighborhood of the shortest path from the vertebra
of t to the vertebra of t −1 via (n,0) has the same size.

We have two different kinds of outgoing edges to consider:
those from some (x,k) to (x,k − 1), and those whose first
component decreases by some amount. From the antimono-
tone perspective, the latter are those of the form

(
n, f2(n)

)
,

and the remaining edges correspond to those of form (x,k)
to (x,k−1). We will call the edges of form

(
n, f2(n)

)
jump

edges, and the other edges predecessor edges. In our figures,
the predecessor edges are deemphasized.

The antimonotonicity of Gls2 implies that every jump edge
of a vertex in the shortest path from some m to 1 leads into
that path again. Assume toward a contradiction there is a jump
edge (z,x) such that z is part of the path but x is not. Then
the path must contain some other jump edge (y,w) with w <
x < y, contradicting antimonotonicity. By the isomorphism, it
immediately follows that all jump edges from vertices of the
certificate pool of n lead into the certificate pool again, and
thus do not enlarge its out-neighborhood.

To analyze the predecessor edges, we define the core of
generation t as the subgraph of Gslls2 induced by the longest
path from (2t , t −2) to (2t−3, t −3), the start of (the core of)
t as (2t , t −2), and the middle of (the core of) t as (2t − t, t −
2) — see fig. 6 for some examples. Figure 7 visualizes the
recursive structure of cores: the core of generation t consists
of two copies of the core of generation t −1.

This recursive structure allows us to compute the number
of predecessor edges on the shortest path from vertebra to
vertebra via some (n,0). We exclude the out-neighbors of the

final vertex of the path, as those are already accounted for in
our calculation for the size of the path from the vertebra of
t −1 to (1,0).

Let n ∈N,n > 4 be of generation t > 2, then the vertebra
of t is (2t , t), the start of the core is (2t , t − 2), the middle
of the core is (2t −2t−1, t −2), and the previous vertebra is
(2t−1, t −1). The skip edges of (2t , t) and (2t , t −1) lead out
of the current generation, so the path to (n,0) has to begin
with

(
(2t , t),(2t , t−1),(2t , t −2)

)
, and hence, the predecessor

edges of both (2t , t) and (2t , t −1) stay within the path.
The behavior of the predecessor edge of (2t , t −2) depends

on whether n falls into the first or second half of the core
(fig. 8). If n > 2t − 2t−1, the path continues to (2t , t − 3),
so the predecessor edge of (2t , t − 2) leads into the path.
In this case, however, the path to (2t−1, t − 1) ends with(
(2t −2t−1, t −2),(2t−1, t −1)

)
, so the predecessor edge of

(2t −2t−1, t −2) leads outside the path. If n ≤ 2t − t, the path
continuous from (2t , t −2) to (2t −2t−1, t −2), so the prede-
cessor edge of (2t , t −2) leads outside the path.

In both cases, the size of the out-neighborhood is one plus
the out-neighborhood of the corresponding path in the core
of generation t − 1. Together with the base case of an out-
neighborhood of size two for t = 2, induction yields an over-
all size of t = ⌈log2(n)⌉. Thus, the out-neighborhood of the
certificate pool of any n > 4 is indeed 2 · ⌈log2(n)⌉.

4.1 Timestamping Rounds
While not our primary focus, we briefly sketch how the SLLS2
meets the optimal positional certificate size in the setting of
timestamping with rounds of bounded length. We let N denote
the round length and T denote the generation of N; to simplify
the presentation we assume that N is a power of two.

Let n ≤ N be of generation t. Let s be the vertex just before
the vertebra of t − 1 on the shortest path from (n,0) to the
vertebra of t − 1. Then the certificate pool of n for rounds
of length N is the shortest path from

(
N, log2(N)

)
to s via

(n,0). Figure 9 and fig. 10 exemplify how the union of two
certificate pools contains the shortest path between their two
numbers, whether the numbers are from the same generation
or not.

In the previous section, we have shown that the size of the
out-neighborhood of the shortest path from the vertebra of t to
the vertebra of t −1 via (n,0) — excluding the out-neighbors
of the vertebra of t − 1 — is ⌈log2(n)⌉. In this new setting,
the path stops at s already, so the size of the out-neighborhood
increases by one, as the vertebra of t −1 itself becomes part
of the out-neighborhood.

If t = T , this path is the certificate pool of n, and it thus
has size ⌈t⌉+1 = ⌈log2(N)⌉+1. If t < T , the certificate pool
of n consists of the shortest path from

(
N, log2(N)

)
to the

vertebra of t, followed by the shortest path from the vertebra
of t to the vertebra of t − 1 via (n,0). The latter has size
t + 1, and the prior is a path of length T − t, and each of
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(12, 1)

(12, 2)

(13, 0) (14, 0)

(14, 1)

(15, 0) (16, 0)

(16, 1)

(16, 2)

(16, 3)

(16, 4)

(17, 0) (18, 0)

(18, 1)

(20, 2)

(24, 3)

(32, 4)

(32, 5)

Figure 4: The certificate pools of 3 and 12, two numbers from different generations. The vertebra of the generation of the lesser
number lies on the spine of the generation of the greater number.
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Figure 5: The certificate pools of 10 and 14, two numbers from the same generation. Their paths necessarily cross within the
generation.
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(6, 1)

(7, 0) (8, 0)

(8, 1)

(8, 2)

(8, 3)

(9, 0) (10, 0)

(10, 1)

(11, 0) (12, 0)

(12, 1)

(12, 2)

(13, 0) (14, 0)

(14, 1)

(15, 0) (16, 0)

(16, 1)

(16, 2)

(16, 3)

(16, 4)

(17, 0) (18, 0)

(18, 1)

(20, 2)

(24, 3)

(32, 4)

(32, 5)

Figure 6: The cores of generations three and four for SLLS2, highlighting their starts and middles.

(2t, t− 2)(2t − t, t− 2)

(2t−1, t− 1)

(2t, t)

Figure 7: The recursive structure of cores for SLLS2: the core
of generation t (dashed) consists of two copies of the core of
generation t −1 (dotted).

its vertices increases the size of the out-neighborhood by
one, except for the final vertex, whose two out-neighbors are
already counted or included in the path from the vertebra of
t to the vertebra of t −1 via (n,0). As such, the total size is
t +1+(T − t) = T +1 = ⌈log2(N)⌉+1 again.

When we add an edge from each (n,0) to the final ver-
tex of the previous timestamping around for inter-round
timestamping, we obtan the final positional certificate size:
(⌈log2(N)⌉+2) · k, where k is the size of an individual hash.
This size is provably optimal [5].

5 Ternary Skip List Scheme

Choosing a base other than 2 in the definition of a skip-list
linking scheme results again in a linking scheme. Of particular
interest is base 3, as this turns out to yield a more efficient
construction in the round-less setting, the ternary skip list

linking scheme (SLLS3):

Vslls3 := {(n,k) : n ∈N,k ∈N0 and 3k | n}∪N,

Eslls3 :=
{(

(n,k+1),(n,k)
)}

∪
{(

(n+3k,k),(n,maxpow3(n))
)}

∪
{(

(n+2 ·3k,k),(n+3k,maxpow3(n))
)}

,

Gslls3 := (Vslls3,Eslls3).

Figure 11 depicts the graph.
The remaining discussion is completely analogous to that

of the SLLS2.
The SLLS3 (without the sinks) is isomorphic to the optimal

antimonotone linking scheme [3] (without the sinks), and to
the limit of the recursive antimonotone graph product Gi+1

opt :=
Gi

opt ⊗Gi
opt ⊗Gi

opt ⊗G1.
We define the generation of n as ⌈log3(n)⌉. We say(

t, log3(t)
)

is the vertebra of generation t, and the set of ver-
tebra of all generations up to and including t is the spine of
generation t. The certificate pool of n is the union of the short-
est paths from the vertebra of t to (n,0), from (n,0) to the
vertebra of t −1, and from that vertebra to (1,0).

This yields positional certificates of size 3 · ⌈log3(n)⌉; the
proof is analogous to that for SLLS2. Let n be of generation
t, then the out-neighborhood of the path from the vertebra of
t −1 to (1,0) has size t.

For the remaining path, we again consider cores, this time
beginning at (3t , t −2) and being split into three parts at the
vertices (3t − 3t−1, t − 2) and (3t − 2 · 3t−1, t − 2). Each of
these parts is isomorphic to the core of generation t −1, al-
lowing us to apply induction on t (see fig. 12). The shortest
path from the vertebra of t to the vertebra of t −1 via (n,0)
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(2t, t− 2)(2t − t, t− 2)

(2t−1, t− 1)

(2t, t)

(2t − t, t− 3)

(2t, t− 2)(2t − t, t− 2)

(2t−1, t− 1)

(2t, t)

(2t, t− 3)

Figure 8: The two possible path shapes in the inductive step. Whether n is in the first or second half of the core, there is exactly
one new out-neighbor of the path compared to the path through the core of the previous generation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1, 0) (2, 0)

(2, 1)

(3, 0) (4, 0)

(4, 1)

(4, 2)

(5, 0) (6, 0)

(6, 1)

(7, 0) (8, 0)

(8, 1)

(8, 2)

(8, 3)

(9, 0) (10, 0)

(10, 1)

(11, 0) (12, 0)

(12, 1)

(12, 2)

(13, 0) (14, 0)

(14, 1)

(15, 0) (16, 0)

(16, 1)

(16, 2)

(16, 3)

(16, 4)

final vertex previous round

Figure 9: The certificate pools of 3 and 12, two numbers from different generations, in a timestamping round of size N = 16.
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(2, 1)

(3, 0) (4, 0)

(4, 1)

(4, 2)

(5, 0) (6, 0)

(6, 1)

(7, 0) (8, 0)

(8, 1)

(8, 2)

(8, 3)

(9, 0) (10, 0)

(10, 1)

(11, 0) (12, 0)

(12, 1)

(12, 2)

(13, 0) (14, 0)

(14, 1)

(15, 0) (16, 0)

(16, 1)

(16, 2)

(16, 3)

(16, 4)

final vertex previous round

Figure 10: The certificate pools of 10 and 14, two numbers from the same generation, in a timestamping round of size N = 16.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

(1, 0) (2, 0) (3, 0)

(3, 1)

(4, 0) (5, 0) (6, 0)

(6, 1)

(7, 0) (8, 0) (9, 0)

(9, 1)

(9, 2)

(10, 0) (11, 0) (12, 0)

(12, 1)

(13, 0) (14, 0) (15, 0)

(15, 1)

(16, 0) (17, 0) (18, 0)

(18, 1)

(18, 2)

(19, 0) (20, 0) (21, 0)

(21, 1)

(22, 0) (23, 0) (24, 0)

(24, 1)

(25, 0) (26, 0) (27, 0)

(27, 1)

(27, 2)

(27, 3)

(28, 0) (29, 0)

(30, 1)

(36, 2)

(54, 3)

(81, 4)

Figure 11: The SLLS3, highlighting the certificate pool of 14.

descends into one of the three parts of the core, the prede-
cessor edges of the start vertices of the other two parts lead
outside the path. Hence, the size of the out-neighborhood of
this path is 2 · t, for an overall positional certificate size of
3 · t = 3 · ⌈log3(n)⌉.

This makes SLLS3 positional certificates about 95 percent
the size of SLLS2 positional certificates, as 3·log3(n)

2·log2(n)
=

loge 8
loge 9 ≈

0.9464. Table 1 list the positional certificate sizes for all n
up to 233, to aid with the decision of whether to go with the
simpler SLLS2 or the asymptotically more eficient SLLS3. For
all n > 216, 3 · ⌈log3(n)⌉ is strictly less then 2 · ⌈log2(n)⌉.

We can naturally generalize base-3 skip list construction
to arbitrary integer bases; the corresponding antimonotone
schemes have been studied by Buldas and Laud [3]. Defini-
tions and proofs for positional certificates generalize nicely,
they have size b · ⌈logb(n)⌉ for the base-b skiplist scheme.
3 · ⌈log3(n)⌉ is the slowest-growing function of this family,
making the most efficient scheme SLLS3 and the simplest
scheme SLLS2 the only two members of this family of practi-
cal interest.

6 Discussion

The SLLS2 achieves the same positional certificate size as
threaded authentication trees [5], hypercore [17], and certifi-
cate transparency logs [9], the best previously known schemes
in that respect. Unlike these schemes, it does so with a under-
lying graph of linear size: every vertex has out-degree at most
2, and the number of vertices of the subgraph for a sequence
of length n is at most 3n. Furthermore, the digest vertex of
every sequence item is the direct parent of the sequence item,
whereas the distance between them can be logarithmic in
hypercore and certificate transparency logs.

As such, the SLLS2 strictly outperforms all existing
schemes that achieve positional certificates of size 2 ·
⌈log2(n)⌉. The SLLS3 then further improves upon the po-
sitional certificate size, it is the first scheme to beat the posi-
tional certificate size of 2 · ⌈log2(n)⌉. It is worth noting that
simply adapting hypercore or transparency logs to a ternary
rather than binary tree structure does not result in positional
certificates of size 3 · ⌈log3(n)⌉ (see fig. 13 and fig. 14). The
skip-list-with-a-twist is qualitatively different from tree struc-

≤ 2 3 ≤ 2 3
1 1 1 131072 34 33
2 2 3 177147 36 33
3 4 3 262144 36 36
4 4 6 524288 38 36
8 6 6 531441 40 36
9 8 6 1048576 40 39

16 8 9 1594323 42 39
27 10 9 2097152 42 42
32 10 12 4194304 44 42
64 12 12 4782969 46 42
81 14 12 8388608 46 45

128 14 15 14348907 48 45
243 16 15 16777216 48 48
256 16 18 33554432 50 48
512 18 18 43046721 52 48
729 20 18 67108864 52 51
1024 20 21 129140163 54 51
2048 22 21 134217728 54 54
2187 24 21 268435456 56 54
4096 24 24 387420489 58 54
6561 26 24 536870912 58 57
8192 26 27 1073741824 60 57

16384 28 27 1162261467 62 57
19683 30 27 2147483648 62 60
32768 30 30 3486784401 64 60
59049 32 30 4294967296 64 63
65536 32 33 8589934592 66 63

Table 1: The number of vertices in the out-neighborhood of
the certificate pools for all n ≤ 233 of SLLS2 and SLLS3. For
example, for 64 < n ≤ 81, the out-neighborhood has size 14
for SLLS2 and size 12 for SLLS3. The highlighted rows are
those where SLLS2 is more efficient than SLLS3.
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Figure 12: The recursive structure of the cores of SLLS3, each consisting of three copies of the core of the previous generation.
No matter in which of the sub-cores a vertex (n,0) lies, the start vertices of the other two sub-cores increase the size of the
out-neighborhood of the certificate pool by two compared to the previous generation.

tures in that regard.
For timestamping with rounds of bounded length, SLLS2

is the first scheme to achieve minimal structural certificates
with a graph of linear size.

Table 2 takes the (competitive) schemes surveyed in [15]
and compares them to our new schemes. The picture is quite
clear: if any new sequence item must add no more than O(1)
of metadata, use the optimal antimonotone linking scheme. In
every other case, use the SLLS2 (if using rounds of bounded
length) or the SLLS3.

7 Conclusion

We have provided prefix authentication schemes that out-
perform the previous state of the art. We hope that future
endeavors around certificate transparency in particular will
adopt our schemes.

We did not consider questions of optimality, leaving open
whether schemes with smaller positional certificates exist.
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Figure 13: Basing hypercore-like or transparency-log-like schemes off ternary trees is inefficient: the paths from a root to the two
leaves each have 2 out-neighbors per vertex, for an overall out-neighborhood size of 4 · ⌈log3(n)⌉−1 rather than the desired
3 · ⌈log3(n)⌉.
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Figure 14: A conventional ternary skip list is inefficient as well: while the path to (1,0) only contributes one out-neighbor per
vertex, the other path contributes three out-neighbors per level of the skip list.

Linear Simple Antimonotone Optimal Antimonotone Threaded Authentication
Positional Certificate n · k (5 · ⌊log2(n)⌋−3) · k (7 · ⌊log3(2n)⌋−4) · k 2 · ⌈log2(n)⌉ · k
Certificate Validation O(certsize) O(certsize) O(certsize) O(certsize · log(certsize))

Edges Amortized O(n) O(n) O(n) O(n · log(n))
Edges Worst Case O(1) O(1) O(1) O(log(n))
Vertices Amortized O(n) O(n) O(n) O(n)
Vertices Worst Case O(1) O(1) O(1) O(log(n))
Identifier Amortized O(1) O(1) O(1) O(1)
Identifier Worst Case O(1) O(1) O(1) O(1)

Digest Pool 1 ⌊log2(n)⌋ ⌊log3(2n)⌋ ⌊log2(n)⌋
Hypercore Transparency Log SLLS2 SLLS3

Positional Certificate 2 · ⌈log2(n)⌉ · k 2 · ⌈log2(n)⌉ · k 2 · ⌈log2(n)⌉ · k 3 · ⌈log3(n)⌉ · k
Certificate Validation O(certsize) O(certsize) O(certsize) O(certsize)

Edges Amortized O(n · log(n)) O(n · log(n)) O(n) O(n)
Edges Worst Case O(log(n)) O(log(n)) O(1) O(1)
Vertices Amortized O(n) O(n · log(n)) O(n) O(n)
Vertices Worst Case O(log(n)) O(log(n)) O(log(n)) O(log(n))
Identifier Amortized O(1) O(1) O(1) O(1)
Identifier Worst Case O(log(n)) O(log(n)) O(1) O(1)

Digest Pool ⌊log2(n)⌋ ⌊log2(n)⌋ ⌊log3(2n)⌋ ⌊log2(n)⌋

Table 2: Summary of prior competitive schemes and our new schemes, according to the complexity criteria layed out in [15].
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